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Abstract - The paper presents the results of numerical investigation of local and average heat transfer of a 
vertically bounded air layer, one of the side boundaries of which has finite thickness and thermal con&c&$. 

The et&t of the ratio of the wall to air thermal resistances on heat transfer is discussed. The investigation was 
carried out over the following range of parameters: Pr = 0.72; Gr < 10’; 1 < h $ 10; 0 6 a < 0.14. 
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Greek symbols 

NOMENCLATURE 

a, = (k,/k,)(G/L), parameter characterizing 
the ratio of solid wall to air thermal 
resistances; 

B7 coefficient of linear expansion of air; 

4 thickness of side wall ; 

0(x, Y), = (T - T,)/AT, dimensionless air tem- 

perature; 

v, kinematic coefficient of viscosity; 

J/7 = @l/v, dimensionless stream function; 
J/‘(x, y’), stream function ; 

w(x’, y’), velocity vortex ; 
Q, = L’w/v, dimensionless velocity vortex. 

INTRODUCTION 

THE PROBLEM of thermal conditions at the solid-fluid 
boundary in natural convection is among the par- 

ticularly urgent ones [l]. Pre-assignment of tempera- 
ture at the solid-fluid interface or heat flux through it 
is not always adequate. Thus, under the conditions of 

intensive heat transfer it fails to account for thermal 
interaction of the body with the surrounding non- 
isothermal fluid flow. Specification of a constant 

surface temperature in steady-state heat transfer is 
justifiable only in the case of high thermal conductivity 
of the body. It is, therefore, advisable to consider the 
problem as a conjugate one, i.e. to seek for a joint 
solution of equations of fluid convection and the 
equation of heat conduction in a body at equal a priori 

unknown temperatures and heat fluxes at the interface 

PI. 
Very little research has been done to date on 

conjugate heat transfer natural convection for an 
interior problem. The solutions of two problems of 
steady-state heat transfer between a solid block and an 
incompressible fluid are given in the book by G. A. 
Ostroumov [3]: that of E. Drakhlin for the case of 
fluid filling a spherical region inside a block and 
that of E. M. Zhukhovitsky for the case of fluid filling 
an infinite horizontal channel in a block. In both cases, 
the method of a series expansion in a small non- 
linearity number Gr or Ra is used. The range of 
applicability of the method is established experimen- 
tally. No discussion is made of the effect of the 
boundary conditions of the fourth kind on heat 
transfer. 
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The steady-state convection of an incompressible 
fluid in a gap between two horizontal infinite coaxial 
cylinders was studied by Rotem [4]. The results of a 
numerical analysis of the solution, obtained in the 
form of the Stokes-type asymptotic expansions, are 
compared with the solution of the same problem in a 
non-conjugate formulation : the isotherm correspond- 
ing to 0 = 0 does not coincide any more with the core 
contour, as is the case for a non-conjugate problem, 
but penetrates into it; the isotherms are no longer 
concentric with the geometrical centre; in transition 
from the fluid into the core they experience a discon- 
tinuity which is greater, the smaller the ratio kJk,. 

Solution of the steady-state conjugate problem of 
natural convection in a gap between concentric con- 
ductive spheres, when the coefficient of thermal con- 
ductivity of the outer sphere is infinite and of the inner 
is finite, was obtained in the form of a double series in 
powers of Gr and Pr in [5]. 

Proof of the existence and uniqueness of the gener- 
alized solution to the problem of unsteady-state con- 
vection of viscous incompressible fluid in the field of 
body forces, when the fluid fills a cavity inside a body of 
finite dimensions, was given in [6]. 

Natural convection of electrically conductive fluid 
in a vertical channel was treated in [7]. The author 
isolated a region of parameters with an insignificant 
effect of the boundary conditions of the fourth kind on 
heat transfer which extends with increase in the ratio of 
the channel half-width to the electrical skin depth. 

The general solution of the problem on fully de- 
veloped laminar mixed convection in a vertical chan- 
nel of arbitrary geometry with heat sources distributed 
uniformly in the wall of constant thickness was 
obtained by the variational method in [8]. The wall 
temperature, close to a constant one, is established at 
K -+ X, where K is determined by the local Nusselt to 
Biot number ratio. At K + 0, the heat flux at the wall 
becomes constant over the perimeter. With a sub- 
stantial increase in the effect of natural convection and 
the conjugation parameter, K, the asymmetry in the 
wall temperature distribution over the perimeter 
decreases. 

The general form of the conjugate generalized 
solution of an unsteady-state mass transfer problem 
in vertical plane porous-wall channels with 
concentration-induced convection of liquid (gas) was 
obtained by the method of generalized variables in [9]. 
This allowed the authors to process the experimental 
data on mass [lo] and heat [ 111 transfer under the 
conditions of the problem stated. 

The problem of conjugate heat transfer through a 
vertical porous layer bounded on one side by a plate of 
finite thickness, with the other being impenetrable or 
free, was solved in [12]. Investigation was carried out by 
numerical solution of full convective equations cor- 
responding to a fine-dispersed isotropic porous me- 
dium and the linear filtration law [13]. At large 
Rayleigh numbers, in the approximation of the boun- 
dary layer, the solution was obtained for heat transfer 

and temperature at the line of conjugation. 
The present paper, which is a continuation of [14], is 

concerned with investigation of conjugate heat trans- 
fer through a plate of finite thickness and thermal 
conductivity and an air layer adjacent to it. The results 
of such a study may prove useful in the design 
calculations for thermal insulation elements of build- 
ing constructions, in the search for optimum thermal 
operating conditions of the electronic equipment and 
so on. 

STATEMENT OF THE PROBLEM 

A geometry of the problem is given in Fig. 1. By the 
use of numerical simulation, a study is made of a two- 
dimensional steady-state problem of heat transfer 
through an air-filled vertical rectangular cavity with 
solid impenetrable walls. One of the side walls is a plate 
of finite thickness. The upper and lower bases of the 
cavity are thermally insulated, the vertical boundaries 
are kept at constant and different temperatures 

T,atx’=-6 and T,atx’=L(T,#T,). 

To mathematically describe convective heat transfer 
in the cavity, use is made of the full system of 
convective equations in the Boussinesq approximation 
when the medium is assumed to be incompressible, 
and its thermophysical properties to be constant 
[15]. By eliminating pressure and incorporating the 
stream function, II/, and vorticity, Q, the system is 
brought to the form [16] 

gr$--t&2)+$(:-ufl)+Grg=O (1) 

J& !&&j+;[; $-aB)=o (2) 

a3j a2$ a* a* z+y= -R, u=--, u= -z.(3-5) 
ay ay 

Here equations (l)-(S) are written in dimensionless 
form. 

FIG. 1. Geometrical model. 



Effect of side walls on heat transfer in laminar natural convection 1603 

In conformity with the statement of the problem, the 
conditions of immovability and impenetrability were 
prescribed at all the boundaries of the cavity 

J/=u=v=o. (6) 

For the present investigation we shall confine our 
consideration to the case when the transverse thermal 
conductivity of the plate is much in excess of that in the 
direction y’. This allows the condition of equality of 
heat fluxes at the interface x’ = 0 to be written as 

k  WO,Y') ks 
r ~ = s [T(O, y’) - T] 

axI (7) 

or in a dimensionless form 

ae 
a.--=@. 

ax 

Here a = (k,/k,)(G/L) is the ratio of the plate to the air 
layer thermal resistances. 

At the other side boundary, x = 1, the condition of 
isothermicity was pre-assigned 

ll= 
1, when T, < T, 

- 1, when T, > T, (9) 

while at the horizontal boundaries of the cavity, y = 0 
and y = h, the condition of thermal insulation was set 

de = 0. 

ay (10) 

As for the boundary conditions for the velocity vortex, 
it was not possible to give their exact formulation. 
They were calculated approximately by the method 
described in [16]. 

METHOD OF SOLUTION 

The system of equations (l)-(5) with boundary 
conditions (6)-(10) was solved numerically using a 
finite difference method. A monotonic conservative 
difference scheme of the second order of accuracy [ 161 
was employed. The stationary solution was deter- 
mined in the issue of Seidel’s iteration. So that the 
convergence of iterations might be speeded up, equa- 
tions for the stream function and velocity vortex 
incorporated relaxational parameters, the optimal 
value of which was determined and corrected in the 
course of the calculations. The calculations were 
carried out on a regular difference grid with spacings 
Ax = l/30 and Ay = l/20. 

DISCUSSION OF RESULTS 

The data, which will be given below, were obtained 
by analyzing numerical solutions of the system of 
equations (l)-( 10) which correspond to the following 
ranges of operational parameters: Pr = 0.72; Gr = 
lo’-10’; a = 0; 0.07; 0.11; 0.14; h = l-10. 
Two v&sions of the boundary conditions for the 
temperature at the wall, x = 1, were considered: the 
case of heating at this wall (T, > T,) and the case of 
cooling (T, < T,). Since the results for either case 

are in the main similar, we shall confine our con- 
sideration for the convenience of the reader, to the case 
of TI > T, alone. The graphical material given below 
also refers to this case. Dimensional analysis of the 
problem considered shows that its complete solution is 
governed by the following functional relationship : 

e 
IL =f(x,y,Ra,a,h). I (11) 

Although of no fundamental importance, it should 
be noted that, since all the calculations were carried 
out at one fixed value of Pr = 0.72, we shall speak 
below about the dependence of the solution on the 
Grashof number, Gr, rather than on the Rayleigh 
number, Ra = PrGr. 

The characteristic features of the effect of Gr on 
thermoconvective processes in the cavity, revealed by 
the solution of the conjugate problem (l)-( 10) at fixed 
values of other parameters, are close to the results 
obtained earlier from the solution of an analogous 
problem in non-conjugate formulation [17,18], when 
both side boundaries of the layer were ideally con- 
ductive and isothermal. Increase in the Grashof num- 
ber will cause intensification of convection, formation 
of the vertical temperature gradient and a change of 
heat transfer regimes in the cavity. The one close to a 
heat conduction regime (Gr < 104) is replaced by the 
boundary layer regime (Gr - 10’) when the isotherms 
in the core are almost horizontal. A further increase in 
the Grashof number (Gr 2 106) leads to a distortion of 
isotherms in the core and to the appearance of 
secondary circulating flows, a detailed description of 
which is given in [19]. 

The calculations show that a relative increase in 
thermal resistance of the plate in reference to thermal 
resistance of the air layer (i.e. increase of a), with 
temperature difference AT = T, - T, being un- 
changed, corresponds to an appreciable decrease in the 
intensity of convective motions in the cavity. Thus, for 
example, at a _ 0.1 the maximum stream function 
characterizing the intensity of convection is almost 
20% below that for the case a = 0. 

Decrease in the intensity of convective motion, 
observed with the rise of a, results in an elevation of 
temperature in the cavity. The main features of the 
effect of a on the structure of the temperature field in 
the layer are vividly illustrated in Fig. 2, which presents 
the distribution of temperature along the horizontal 
and vertical axes of the layer, as well as at the line of 
conjugation. The curves show that at all as the air 
temperature at the conjugation line and close to it 
increases with the height of the layer. The pattern of its 
increase is close to a linear one. The temperature 
gradient hardly varies along the layer height. Its value 
increases with approach to the layer side boundaries 
and depends but slightly on a. 

In consideration of heat transfer between a vertical 
air layer and a conductive plate with finite thickness, 
the local, 
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FIG. 2. Temperature and stream function distribution along 
the horizontal axis of the layer (a) and distribution of 
temperature along the vertical axis and the line of con- 
jugation(b)ata = 0(1);0.07(2);0.11 (3);0.14(4);Gr = 105; 

h = 6. 

4cv’) = - kfZ _ , 
x’-0 

and average, 

Q = f s H q(y’)dy’, 
0 

heat fluxes at the conjugation line, which are of the 
greatest interest for application, will be given in terms 

of the local and average Nusselt numbers 

dy =&. (12) 
/ 

It has been shown in the works of A. V. Luikov 
[20,21] that over the range of the Rayleigh numbers 
10’ s Ra 5 JO’, the mutual effect of the temperature 
fields of the waii and fluid flow past it under the --,-- ~~~~ ~~~- -mm-, ~~~~~ ~~ 

At Gr _ lo4 and above, due to the effect of the 
natural convection, non-uniformity in distribution of 
the local Nusselt numbers over the vertical boundaries 
of the layer becomes more appreciable. In the vicinity 
of the upper portion of the thick plate, the absolute 
values of Nu, are the highest. With downward fluid 
flow along the plate, the values of Nu, decrease rather 
rapidly. Rise in thermal resistance of the plate at fixed 
Gr leads to a decrease in the local heat removal due to a 
drop in the intensity of convection. A similar pattern is 
also observed on the right-hand thin boundary of the 
laver with the onlv difference that the values of Nu, are 

(13) 

which is the value proportional to the ratio between 
the wall and the fluid thermal resistances. 

In the course of analysis and processing of the results 
obtained it has become possible to construct a single- 
valued dependence of NuJNu, on Br, = aRa’14, where 
Nu, is the average Nusselt number in a layer with 

ideally conductive isothermal boundaries (Br, = 0). In 
this case, the scatter in the values of Nu/Nu, at fixed 
Br, did not exceed 10-20x, while the value of Nu itself 
varied several-fold over the range of parameters 
considered. 

The curve presented in Fig. 3 makes it possible to 
calculate the average Nusselt number for the conjugate 

heat transfer when the average Nusselt number for the 
layer with ideally conductive isothermal boundaries is 
known; while, for determining the latter, there are 

many approximate formulae obtained by a number of 
authors [22,23]. 

Processing of the obtained numerical results by the 
least square method has made it possible, in the range 5 

x lo3 5 Gr 5 5 x lo“, to construct, for different 
values of a, the power dependences of the average 
Nusselt number on Gr and h 

Nu = 0.225 Gr’.” h-O.“, (a = 0) (14) 

Nu = 0.276Gr0.‘96 h-O.“, (a = 0.07) (15) 

Nu = 0.334Gr0.‘74h-0.12, (a = 0.14). (16) 

Note that the average Nusselt numbers calculated by 
formula (14) and corresponding to the layer with 

isothermal and ideally conductive boundaries, are 
8-10% below and 9-12x above the values of Nu 

calculated respectively from the formulae of Elder [22] 
and Jakob [23]. 

Inspection of the distribution of the local Nusselt 

numbers shows that at low Grashof numbers (Gr 5 5 
x 10’) the local heat fluxes on the side boundaries of 

the layer practically remain unchanged with the height 
of the layer, the only exception being small segments 
close to the base of the layer. Here, an increase in t[ 
leads to a small overall decrease in the local Nusselt 
numbers. 
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FIG. 3. Average Nusselt number for conjugate heat transfer. 
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FIG. 4. Distribution of the local Nusselt number along the layer side boundaries with h = 6 at Gr = lo3 
(broken curves), Gr = lo5 (solid curves) and a = 0 (1); 0.7 (2); 0.14 (3). 

highest in its lower portion and decrease with an 
increase in height, which is attributed to the structure 
of convective motion in the cavity (Fig. 4). 
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EFFET DES PAROIS LATERALES SUR LE TRANSFERT THERMIQUE 
A TRAVERS UNE COUCHE D’AIR VERTICALE EN CONVECTION 

LAMINAIRE NATURELLE 

R&urn4 ~ On prCsente les r&sultats de I’itude numerique du transfert thermique local et global d’une couche 
d’air verticalement limitie, d’tpaisseur finie et de conductivitC thermique donnte. On discute l’effet du 
rapport des rtsistances thermiques de la paroi et de I’air sur le transfert thermique. L’itude concerne les 

domaines suivants de variation des paramttres Pr = 0,72; Gr < 10’; 1 < h < 10; 0 < a < 0,14. 

EINFLUD DER SEITENW;iNDE AUF DEN WARMETRANSPORT BE1 FREIER 
KONVEKTION DURCH EINE VERTIKALE LUFTSCHICHT 

Zusammenfassune-Der Bericht beschreibt die Ergebnisse der numerischen Untersuchung des lokalen und 
mittleren WHrmeGansports in einer vertikal begreniten Luftschicht, deren eine seitliche Begrenzung endliche 
Dicke und Wlrmeleitfghigkeit besitzt. Der EinfluB des Verhlltnisses vom Warmeleitwiderstand der Wand 
zu dem der Luft auf den WIrmetransport wird diskutiert. Die Untersuchung wurde fiir den folgenden 

Parameterbereich durchgefiihrt: Pr =0,72; Gr< 10’; 1 I h < 10; 01a <0,14. 

BJIMlIHME 6OKOBbIX CTEHOK HA TEIlJIOO6MEH qEPE3 BEPTWKAJIbHbIR CJIOZi 
B03AYXA IIPW JIAMMHAPHOti ECTECTBEHHOR KOHBEKLJkiki 

Am+orau~n - M3naraloTcn pe3ynbTaTL.l VHcneHHoro HccnefloaaHHx noKanbHor0 H cpenHer0 Tenno- 
o6MeHa aepTBKaJlbHOr0 OrpaHHqeHHOrO CJlOIl BO3ayXa. OnHa A3 60KOBbIX rpaHHu KOTOpOrO WMeeT 
KOHeSHyH, TO,,mHHy W TennOnpOBOnHOCTb. 06cymnaeTca BSIHIIHAC OTHOcHTcnbHOii BenB’rHHbI TepMH- 
SecKHx conpoTuaneHHfi cTeHKH w XAL~K~CTL~ Ha TennOO6MeH. MccnenosaHHa npoaeneHb1 B nwanasoae 

napaMeTpoe: Pr = 0,72; Gr < 10’; I <h < 10; 0 < z < 0,14. 


